Convergence of the Finite Volume Method for Multidimensional Conservation Laws

نویسنده

  • B. Cockburn
چکیده

We establish the convergence of the nite volume method applied to multidimensional hyperbolic conservation laws, and based on monotone numerical ux-functions. Our technique applies under a fairly unrestrictive assumption on the triangulations (\\at elements" are allowed), and to Lipschitz continuous ux-functions. We treat the initial and boundary value problem, and obtain the strong convergence of the scheme to the unique entropy discontinuous solution in the sense of Kruzkov. The proof of convergence is based on a convergence framework due to Coquel and LeFloch (Math. of >From a convex decomposition of the scheme, we derive a new estimate for the rate of entropy dissipation, and a new formulation of the discrete entropy inequalities. These estimates are shown to be suucient for the passage to the limit in the discrete equation. Convergence follows from DiPerna's uniqueness result in the class of entropy measure-valued solutions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicite monotone schemes

— We study her e the convergence of Finite Volume schemes of monotone type for gênerai multidimensional conservation laws. By generalizing a previous result of Kuznetsov for Finite Différence schemes, we obtain under gênerai assumptions error bounds in h when the initial condition lies in BV (U) ; convergence follows for initial conditions in L (U) C\ L (U), Résumé. — On étudie ici la convergen...

متن کامل

Convergence of a Finite Volume Extension of the Nessyahu–tadmor Scheme on Unstructured Grids for a Two-dimensional Linear Hyperbolic Equation∗

Abstract. The nonoscillatory central difference scheme of Nessyahu and Tadmor is a Godunovtype scheme for one-dimensional hyperbolic conservation laws in which the resolution of Riemann problems at the cell interfaces is bypassed thanks to the use of the staggered Lax–Friedrichs scheme. Piecewise linear MUSCL-type (monotonic upstream-centered scheme for conservation laws) cell interpolants and ...

متن کامل

Convergence of a staggered Lax-Friedrichs scheme for nonlinear conservation laws on unstructured two-dimensional grids

Based on Nessyahu and Tadmor’s nonoscillatory central difference schemes for one-dimensional hyperbolic conservation laws [16], for higher dimensions several finite volume extensions and numerical results on structured and unstructured grids have been presented. The experiments show the wide applicability of these multidimensional schemes. The theoretical arguments which support this are some m...

متن کامل

A New Convergence Proof for Finite Volume Schemes Using the Kinetic Formulation of Conservation Laws

We give a new convergence proof for finite volume schemes approximating scalar conservation laws. The main ingredients of the proof are the kinetic formulation of scalar conservation laws, a discrete entropy inequality, and the velocity averaging technique.

متن کامل

Finite volume relaxation schemes for multidimensional conservation laws

We consider finite volume relaxation schemes for multidimensional scalar conservation laws. These schemes are constructed by appropriate discretization of a relaxation system and it is shown to converge to the entropy solution of the conservation law with a rate of h1/4 in L∞([0, T ], Lloc(R d)) .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995